

Emily Burns, Asher Feldman, Rob Fletcher,
Tomas Lin, Justin Reynolds, Chris Sanden,

Lars Wander, and Rob Zienert

Continuous Delivery with
Spinnaker

Fast, Safe, Repeatable Multi-Cloud
Deployments

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03549-7

[LSI]

Continuous Delivery with Spinnaker
by Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin, Justin Reynolds, Chris Sanden, Lars Wan‐
der, and Rob Zienert

Copyright © 2018 Netflix, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nikki McDonald
Editor: Virginia Wilson
Production Editor: Nan Barber
Copyeditor: Charles Roumeliotis
Proofreader: Kim Cofer

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
Technical Reviewers: Chris Devers and Jess Males

May 2018: First Edition

Revision History for the First Edition
2018-05-11: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Delivery with Spin‐
naker, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsi‐
bility for errors or omissions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Netflix. See our statement of editorial inde‐
pendence.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Preface. vii

1. Why Continuous Delivery?. 1
The Problem with Long Release Cycles 1
Benefits of Continuous Delivery 2
Useful Practices 2
Summary 3

2. Cloud Deployment Considerations. 5
Credentials Management 5
Regional Isolation 6
Autoscaling 7
Immutable Infrastructure and Data Persistence 9
Service Discovery 9
Using Multiple Clouds 10
Abstracting Cloud Operations from Users 10
Summary 12

3. Managing Cloud Infrastructure. 13
Organizing Cloud Resources 13
The Netflix Cloud Model 14
Cross-Region Deployments 16
Multi-Cloud Configurations 17
The Application-Centric Control Plane 17
Summary 19

4. Structuring Deployments as Pipelines. 21
Benefits of Flexible User-Defined Pipelines 21
Spinnaker Deployment Workflows: Pipelines 22

iii

Pipeline Stages 22
Triggers 24
Notifications 25
Expressions 25
Version Control and Auditing 25
Example Pipeline 26
Summary 27

5. Working with Cloud VMs: AWS EC2. 29
Baking AMIs 29
Tagging AMIs 30
Deploying in EC2 30
Availability Zones 32
Health Checks 32
Autoscaling 33
Summary 35

6. Kubernetes. 37
What Makes Kubernetes Different 37
Considerations 38
Summary 41

7. Making Deployments Safer. 43
Cluster Deployments 43
Pipeline Executions 46
Automated Validation Stages 48
Auditing and Traceability 49
Summary 50

8. Automated Canary Analysis. 51
Canary Release 51
Canary Analysis 52
Using ACA in Spinnaker 53
Summary 55

9. Declarative Continuous Delivery. 57
Imperative Versus Declarative Methodologies 57
Existing Declarative Systems 58
Demand for Declarative at Netflix 58
Summary 61

10. Extending Spinnaker. 63
API Usage 63

iv | Table of Contents

UI Integrations 64
Custom Stages 65
Internal Extensions 65
Summary 65

11. Adopting Spinnaker. 67
Sharing a Continuous Delivery Platform 67
Success Stories 69
Additional Resources 69
Summary 70

Table of Contents | v

Preface

Many, possibly even most, companies organize software development around
“big bang” releases. An application has a suite of new features and improvements
developed over weeks, months, or even years, laboriously tested, then released all
at once. If bugs are found post-release it may be some time before users receive
fixes.

This traditional software release model is rooted in the production of physical
products—cars, appliances, even software sold on physical media. But software
deployed to servers, or installed by users over the internet with the ability to
easily upgrade does not share the constraints of a physical product. There’s no
need for a product recall or aftermarket upgrades to enhance performance when
a new version can be deployed over the internet as frequently as necessary.

Continuous delivery is a different model for delivering software that aims to
reduce the amount of inventory—features and fixes developed but not yet deliv‐
ered to users—by drastically cutting the time between releases. It can be seen as
an outgrowth of agile software development with its aim of developing software
iteratively and seeking continual validation and feedback from users in order to
avoid the increased risk of redundancy, flawed analysis, or features that are not fit
for the purpose associated with large, infrequent software releases.

Teams using continuous delivery push features and fixes live when they are ready
without batching them into formal releases. It is not unusual for continuous
delivery teams to push updates live multiple times a day.

Continuous deployment goes even further than continuous delivery, automatically
pushing each change live once it has passed the automated tests, canary analysis,
load testing, and other checks that are used to prove that no regressions were
introduced.

Continuous delivery and continuous deployment rely on the ability to define an
automated and repeatable process for releasing updates. At a cadence as high as
tens of releases per week it quickly becomes untenable for each version to be

vii

manually deployed in an ad hoc manner. What teams need are tools that can reli‐
ably deploy releases, help with monitoring and management if—let’s be honest,
when—there are problems, and otherwise stay out of the way.

Spinnaker
Spinnaker was developed at Netflix to address these issues. It enables teams to
automate deployments across multiple cloud accounts and regions, and even
across multiple cloud platforms, into coherent “pipelines” that are run whenever
a new version is released. This enables teams to design and automate a delivery
process that fits their release cadence, and the business criticality of their applica‐
tion.

Netflix deployed its first microservice to the cloud in 2009. By 2014, most serv‐
ices, with the exception of billing, ran on Amazon’s cloud. In January 2016 the
final data center dependency was shut down and Netflix’s service was 100% run
on AWS.

Spinnaker grew out of the lessons learned in this migration to the cloud and the
practices developed at Netflix for delivering software to the cloud frequently, rap‐
idly, and reliably.

Who Should Read This?
This report serves as an introduction to the issues facing a team that wants to
adopt a continuous delivery process for software deployed in the cloud. This is
not an exhaustive Spinnaker user guide. Spinnaker is used as an example of how
to codify a release process.

If you’re wondering how to get started with continuous delivery or continuous
deployment in the cloud, if you want to see why Netflix and other companies
think continuous delivery helps manage risk in software development, if you
want to understand how codifying deployments into automated pipelines helps
you innovate faster, read on…

Acknowledgements
We would like to thank our colleagues in the Spinnaker community who helped
us by reviewing this report throughout the writing process: Matt Duftler, Ethan
Rogers, Andrew Phillips, Gard Rimestad, Erin Kidwell, Chris Berry, Daniel
Reynaud, David Dorbin, and Michael Graff.

—The authors

viii | Preface

CHAPTER 1

Why Continuous Delivery?

Continuous delivery is the practice by which software changes can be deployed
to production in a fast, safe, and automatic way.

In the continuous delivery world, releasing new functionality is not a world-
shattering event where everyone in the company stops working for weeks follow‐
ing a code freeze and waits nervously around dashboards during the fateful
minutes of deployment. Instead, releasing new software to users should be rou‐
tine, boring, and so easy that it can happen many times a day.

In this chapter, we’ll describe the organizational and technical practices that
enable continuous delivery. We hope that it convinces you of the benefits of a
shorter release cycle and helps you understand the culture and practices that
inform the delivery culture at Netflix and other similar organizations.

The Problem with Long Release Cycles
Dependencies drift. As undeployed code sits longer and longer, the libraries and
services it depends upon move on. When it does come time to deploy those
changes, unexpected issues will arise because library versions upstream have
changed, or a service it talks to no longer has that compatible API.

People also move on. Once a feature has finished development, developers will
naturally gravitate to the next project or set of features to work on. Information is
no longer fresh in the minds of the creators, so if a problem does arise, they need
to go back and investigate ideas from a month, six months, or a year ago. Also, by
having large releases, it becomes much more difficult to isolate and triage the
source of issues.

So how do we make this easier? We release more often.

1

Benefits of Continuous Delivery
Continuous delivery removes the ceremony around the software release process.
There are several benefits to this approach:

Innovation
Continuous delivery ensures quicker time to market for new features, config‐
uration changes, experiments, and bug fixes. An aggressive release cadence
ensures that broken things get fixed quickly and new ways to delight users
arrive in days, not months.

Faster feedback loops
Smaller changes deployed frequently makes it easier to troubleshoot issues.
By incorporating automated testing techniques like chaos engineering or
automated canary analysis into the delivery process, problems can be detec‐
ted more quickly and fixed more effectively.

Increase reliability and availability
To release quickly, continuous delivery encourages tooling to replace manual
error-prone processes with automated workflows. Continuous delivery pipe‐
lines can further be crafted to incrementally roll out changes at specific times
and different cloud targets. Safe deployment practices can be built into the
release process and reduce the blast radius of a bad deployment.

Developer productivity and efficiency
A more frequent release cadence helps reduce issues such as incompatible
upstream dependencies. Accelerating the time between commit and deploy
allows developers to diagnose and react to issues while the change is fresh in
their minds. As developers become responsible for maintaining the services
they deploy, there is a greater sense of ownership and less blame game when
issues do arise. Continuous delivery leads to high performing, happier devel‐
opers.

Useful Practices
As systems evolve and changes are pushed, bugs and incompatibilities can be
introduced that affect the availability of a system. The only way to enable more
frequent changes is to invest in supporting people with better tooling, practices,
and culture.

Here are some useful techniques and principles we’ve found that accelerate the
adoption of continuous delivery practices:

Encourage self-sufficiency
Instead of delegating the deployment process to a specialized team, allow the
engineers who wrote the code to be responsible for deploying and support‐

2 | Chapter 1: Why Continuous Delivery?

ing their own releases. By providing self-serve tools and empowering engi‐
neers to push code when they feel it is ready, engineers can quickly innovate,
detect, and respond.

Automate all the things
Fully embracing automation at every step in the build, test, release, promote
cycle reduces the need to babysit the deployment process.

Make it visible
It is difficult to improve things that cannot be observed. We found that con‐
solidating all the cloud resources across different accounts, regions, and
cloud providers into one view made it much easier to track and debug any
infrastructure issues. Deployment pipelines also allowed our users to easily
follow how an artifact was being promoted across different steps.

Make it easy to do
It shouldn’t require expert-level knowledge to craft a cloud deployment. We
found that focusing heavily on user experience so that anyone can modify
and improve their own processes had a significant impact in adopting con‐
tinuous delivery.

Paved road
It is much easier to convince a team to embrace continuous delivery when
you provide them with a ready-made template they can plug into. We
defined a “paved road” (sometimes called a “golden road”) that encapsulates
best practices for teams wishing to deploy to the cloud (Figure 1-1). As more
and more teams started using the tools, any improvements we made as part
of the feedback loop became readily available for other teams to use. Best
practices can become contagious.

Figure 1-1. The paved road of software release at Netflix. The top row shows the
steps, from code check-in to taking traffic, and the bottom rows show the tools used
at Netflix for each step.

Summary
After migrating to a continuous delivery platform, we found the number of issues
and outages caused by bad deployments reduced significantly. Now that we are
all-in on Spinnaker, it is even easier to help push these practices further, resulting
in a widespread reduction in deployment-related issues.

Summary | 3

CHAPTER 2

Cloud Deployment Considerations

Whether starting a greenfield project or planning the migration of a complex dis‐
tributed system to the cloud, choices made around how software is deployed and
infrastructure architected have a material impact on an application’s robustness,
security, and ability to scale. Scale here refers both to the traffic handled by appli‐
cations and the growing number of engineers, teams, and services in an organi‐
zation.

The previous chapter covered why continuous delivery can be beneficial to
organizations. It also covered some practices to keep in mind as you think about
continuous delivery in your organization. In this chapter, we will discuss funda‐
mental considerations that your organization will need to solve in order to suc‐
cessfully deploy software to the cloud. Each of these areas needs to have a
solution in your organization before you can choose a continuous delivery strat‐
egy. For each consideration, we will demonstrate the pitfalls and present the work
that has been done in the community and at Netflix as a potential solution. You’ll
learn what to consider before you set up a continuous delivery solution.

Credentials Management
The first thing to consider is how you will manage credentials within the cloud.
As a wise meme once said, “the cloud is just someone else’s computer.” You
should always be careful when storing sensitive data, but all the more so when
using a rented slice of shared hardware.

Cloud provider identity and access management (IAM) services help, enabling
the assignment of roles to compute resources, empowering them to access
secured resources without statically deployed credentials, which are easily stolen
and difficult to track. IAM only goes so far, though. Most likely, at least some of
your services will need to talk to authenticated services operated internally or by

5

third-party application vendors. Database passwords, GitHub tokens, client cer‐
tificates, and private keys should all be encrypted at rest and over the wire, as
should sensitive customer data. Certificates should be regularly rotated and have
a tested revocation method.

Google’s Cloud Key Management service meets many of these needs for Google
Cloud Platform (GCP) customers. Amazon’s Key Management Service provides
an extra layer of physical security by storing keys in hardware security modules
(HSMs), but its scope is limited to the fundamentals of key storage and manage‐
ment. Kubernetes has a Secrets system focused on storage and distribution to
containers. HashiCorp’s Vault is a well regarded open source solution to secret
and certificate management that is fully featured and can run in
any environment.

Whether selecting or building a solution, consider how it will integrate with your
software delivery process. You should deploy microservices with the minimal set
of permissions required to function, and only the secrets they need.

Regional Isolation
The second thing to consider is regional isolation. Cloud providers tend to orga‐
nize their infrastructure into addressable zones and regions. A zone is a physical
data center; several zones in close proximity make up a region. Due to their prox‐
imity, network transit across zones within the same region should be very low
latency. Regions can be continents apart and latency between them orders of
magnitude greater than between neighboring zones.

The most robust applications operate in multiple regions, without shared depen‐
dencies across regions.

Simple Failure Scenario
Take an application that runs in region-1, region-2, and region-3. If a physical
accident or software error takes region-1 offline, the only user impact should be
increased network latency for those closest to region-1, as their requests now
route to a region further afield.

This is the ideal scenario, but is rarely as simple as duplicating services and infra‐
structure to multiple regions, and can be expensive. In our simple failure sce‐
nario, where the only user impact was caused by network latency, the other
regions had sufficient capacity ready to handle the sudden influx of users from
region-1. Cold caches didn’t introduce additional latency or cause database
brownouts, and users were mercifully spared data consistency issues, which can

6 | Chapter 2: Cloud Deployment Considerations

occur when users are routed to a new region before the data they just saved in
their original region had time to replicate.

For many organizations, that ideal isn’t realistic. Accepting some availability and
latency degradation for a brief time while “savior” regions autoscale services in
response to a lost region can result in significant cost savings. Not all data stores
are well suited for multiregion operation, with independent write masters in all
regions. Many applications depend on in-memory caches to shield slower data‐
bases from load spikes, and to reduce overall latency. Let’s say we have a database
that typically serves 10k requests per second (RPS) of read queries behind a cach‐
ing service with a 90% hit rate. How will the system behave if there is an influx of
100k RPS from users of the failed region, all resulting in cache misses and
directly hitting the database? Questions like this are important to evaluate as you
consider deploying more instances to help with failure scenarios.

If your company has yet to reach a scale that justifies active operation in multiple
regions, deploy services to tolerate a zone failure within your chosen region. In
most cases, doing so is far less complicated or costly. Due to the low latency
across zones, storage systems that support synchronous replication or quorum-
based operations can be evenly distributed across three or more zones within a
region, transparently tolerating a zone failure without sacrificing strong consis‐
tency. Autoscalers support automatic instance balancing across zones, which
works seamlessly for stateless services. Pick a consistent set of zones to use, and
ensure the minimum instance count for each critical service is a multiple of the
number of chosen zones. If you are using multiple cloud provider accounts for
isolation purposes, keep in mind that some cloud providers randomize which
physical data center a zone identifier maps to within each account.

Once your organization has extensive experience with regional redundancy,
zone-level redundancy within regions becomes less important and may no longer
be of concern. A region impacted by a zone failure may not be capable of serving
the influx of traffic from a concurrent regional failure. Evacuating traffic from a
degraded region may make follow-on issues easier to respond to.

Autoscaling
The third thing to consider is autoscaling. Autoscaling, or dynamic orchestration,
is a fundamental of cloud-native computing. If the physical server behind a
Kubernetes pod or AWS instance fails, the pod or instance should be replaced
without intervention. By ensuring that each resource is correctly scaled for its
current workload, an autoscaler is as invaluable at maintaining availability under
a steady workload as it is in scaling a service up or down as workloads vary. This
is far more cost-effective than constantly dedicating the resources required to
handle peak traffic or potential spikes.

Autoscaling | 7

1 http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

Smooth autoscaling requires knowledge of how each of your services behaves
under load, their startup characteristics, and the resource demands they place on
downstream services. For example, if you have a small MySQL cluster capable of
accepting 2,000 concurrent connections and the service calling it uses a pool of
30 connections per instance, take care not to allow that service to scale beyond 66
instances. In complex distributed systems, such limits can be more difficult to
ascertain.

A simple scaling policy reacts to a single system-level metric, such as average
CPU utilization across instances. How should the upper and lower bounds be
set? The level of CPU utilization at which service performance degrades will vary
from service to service and can be workload dependent. Historical metrics can
help (i.e., “When CPU utilization hit 70% last Sunday, 99th percentile latency
spiked 1500 ms”), but factors other than user requests can impact CPU utiliza‐
tion. At Netflix, we prefer to answer this question through a form of production
experimentation we call squeeze testing. It works by gradually increasing the per‐
centage of requests that are routed to an individual instance as it is closely moni‐
tored.

It helps to run such tests regularly and at different times of the day. Perhaps a
batch job that populates a data store periodically reduces the maximum through‐
put of some user-facing microservices for the duration? Globally distributed
applications should also be tested independently across regions. User behavior
may differ from country to country in impactful ways.

The metric we all use for CPU utilization is deeply misleading, and getting worse
every year.

—Brendan Gregg, “CPU Utilization is Wrong” 1

Scaling based on CPU utilization may not always behave as intended.
Application-specific metrics can result in better performing and more consistent
scaling policies, such as the number of requests in a backlog queue, the duration
requests spend queued, or overall request latency. But no matter how well tuned
a scaling policy is, autoscaling provides little relief for sudden load spikes (think
breaking news) if parts of your application are slow to launch due to lengthy
warmup periods or other complications. If a production service takes 15 minutes
to start, reactive autoscaling is of little help in the case of a sudden traffic
spike. At Netflix, we built our own predictive autoscaler that uses recent traffic
patterns and seasonality to predict when critical but slow-to-scale-up services
will need additional capacity.

8 | Chapter 2: Cloud Deployment Considerations

http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

Immutable Infrastructure and Data Persistence
The fourth thing to consider is immutable infrastructure and data persistence.
Public clouds made the Immutable Server pattern widely accessible for the first
time, which Netflix quickly embraced. Instead of coordinating servers to install
the latest application deployment or OS updates in place, new machine images
are built from a base image (containing the latest OS patches and foundational
elements), upon which is added the version of an application to be deployed.
Deploying new code? Build a new image.

We strongly recommend the Immutable Server pattern for cloud-deployed
microservices, and it comes naturally when running on a container platform.
Since Docker containers can be viewed as the new package format in lieu of RPM
or dpkg, they are typically immutable by default.

The question then becomes: when should this pattern be avoided? Immutability
can be a challenge for persistent services such as databases. Does the system sup‐
port multiple write masters or zero downtime master failovers? What is the data‐
set size and how quickly can it be replicated to a new instance? Network block
storage enables taking online snapshots that can be attached to new instances,
potentially cutting down replication time, but local NVMe storage may make
more sense for latency-sensitive datastores. Some persistent services do offer a
straightforward path toward the immutable replacement of instances, yet taking
advantage of this could be cost-prohibitive for very large datasets.

Service Discovery
The fifth thing to consider is service discovery. Service discovery is how cloud
microservices typically find each other across ever-changing topologies. There
are many approaches to this problem, varying in features and complexity. When
Netflix first moved into AWS, solutions to this problem were lacking, which led
to the development of the Eureka service registry, open sourced in 2012. Eureka
is still at the heart of the Netflix environment, closely integrated with our chosen
microservice RPC and load-balancing solutions. While third-party Eureka clients
exist for many languages, Eureka itself is written in Java and integrates best with
services running on the JVM. Netflix is a polyglot environment where non-JVM
services typically run alongside a Java sidecar that talks to Eureka and load-
balances requests to other services.

The simplest service discovery solution is to use what’s already at hand. Kuber‐
netes provides everything needed for services it manages via its concept of Serv‐
ices and Endpoints. Amazon’s Application Load Balancer (ALB) is better suited
for mid-tier load balancing than its original Elastic Load Balancer offering. If
your deployment system manages ALB registration (which Spinnaker can do)
and Route53 is used to provide consistent names for ALB addresses, you may not

Immutable Infrastructure and Data Persistence | 9

need an additional service discovery mechanism, but you might want
one anyway.

Netflix’s Eureka works best in concert with the rest of the Netflix runtime plat‐
form (also primarily targeting the JVM), integrating service discovery, RPC
transport and load balancing, circuit breaking, fallbacks, rate limiting and load
shedding, dynamically customizable request routing for canaries and squeeze
testing, metrics collection and event publication, and fault injection. We find all
of these essential to building and operating robust, business-critical cloud serv‐
ices.

A number of newer open source service mesh projects, such as Linkerd and
Envoy, both hosted by the CNCF, provide developers with similar features to the
Netflix runtime platform. The service mesh combines service discovery with the
advanced RPC features just mentioned, while being language and environment
agnostic.

Using Multiple Clouds
The sixth thing to consider is multi-cloud strategy. Organizations take advantage
of multiple cloud providers for a number of reasons. Service offerings or the
global distribution of compute regions may complement each other. It may be in
pursuit of enhanced redundancy or business continuity planning. Or it may
come about organically after empowering different business units to use
whichever solutions best fit their unique needs. When deploying to different
clouds you should understand how features like identity management and virtual
private cloud (VPC) networking differ between providers.

Abstracting Cloud Operations from Users
The final thing to consider is how your users will interact with the cloud(s)
you’ve chosen. Solving the previous considerations for your organization pro‐
vides the groundwork for enabling teams to move quickly and deploy often. In
order to enforce the choices that you’ve made, or provide a “paved”/“golden” path
for other teams, many organizations provide a custom view of the cloud provid‐
ers they have. This custom view provides abstractions and can handle organiza‐
tional needs like audit logging, integration with other internal tools, best
practices in the form of codified deployment strategies, and a helpful customized
view of the infrastructure.

For Netflix, that custom view of the cloud is called Spinnaker (see Figure 2-1).
Over the years we’ve built Spinnaker to be flexible, extensible, resilient, and
highly available. We have learned from our internal users that the tools we build
need to make best practices simple, invisible, and opt-out. There are many built-
in features to make best practices happen that will be discussed in this report. For

10 | Chapter 2: Cloud Deployment Considerations

example, Spinnaker will always consider the combined health of a load balancer
and service discovery before allowing a previous server group to be disabled dur‐
ing a deployment using a red/black strategy (discussed in detail in “Deploying
and Rolling Back” on page 15). By enforcing this, we can ensure that if there is a
bug in the new code, the previous server group is still active and taking traffic.

Figure 2-1. This is the main screen of Spinnaker. This view (the Infrastructure Clus‐
ters view) shows the resources in the application.

The Infrastructure Clusters view, shown in Figure 2-1, is just one screen of Spin‐
naker. This view nicely demonstrates how we abstract the two clouds (Amazon
and Titus) away from our users. Box 1 shows the application name. Box 2 shows
a cluster—a grouping of identically named server groups in an account (PROD),
and the health of the cluster (100% healthy). Box 3 shows a single server group
with one healthy instance running in US-WEST-2, running version v001, which
corresponds to Jenkins build #189. Box 4 shows details for that single running
instance, such as launch time, status, logs, and other relevant information.

Over the course of this report we will continue to show screenshots of the Spin‐
naker UI to demonstrate how Netflix has codified continuous delivery.

Abstracting Cloud Operations from Users | 11

Summary
In this chapter, you have learned the fundamental parts of a cloud environment
that must be considered in order to successfully deploy to the cloud. You learned
about how Netflix approaches these problems as well as open source solutions
that can help manage parts of these challenges. Once you’ve solved these prob‐
lems within your cloud environment, you’re ready to enable teams to deploy
early and often into this environment. You will empower your teams to deploy
their software without each team having to solve the problems covered in this
chapter for themselves. Additionally, providing a custom view of the cloud that
enforces best practices will help your teams draw from the lessons codified in
that tool.

12 | Chapter 2: Cloud Deployment Considerations

CHAPTER 3

Managing Cloud Infrastructure

Whether you are creating a cloud strategy for your organization or starting at a
new company that has begun moving to the cloud, there are many chal‐
lenges. Just understanding the scope of the resources, components, and conven‐
tions your company relies on is a daunting prospect. If it’s a company that has a
centralized infrastructure team, your team might even be responsible for multiple
teams’ cloud footprints and deployments.

Chapter 2 set the stage for this transition by describing the fundamental pieces of
a cloud environment. In this chapter, you’ll learn about some of the challenges
found in modern multi-cloud deployments and how approaches like naming
conventions can help in adding consistency and discoverability to your deploy‐
ment process.

Organizing Cloud Resources
When thinking about how to manage the different resources that need to be
deployed in the cloud, there are many questions that need to be asked about how
those resources should to be organized:

• Do teams manage their own infrastructure or is it centralized?
• Do different teams have different conventions and approaches?
• Is everything in one account or split across many accounts?
• Do applications have dedicated server groups?
• Do resource names indicate their role in the cloud ecosystem?
• Are the instances or containers within a server group homogeneous?
• How are security and load balancing handled for internal-facing and

external-facing services?

Only when these questions are answered can the teams working on deployments
work out how to lay out and organize the resources.

13

Ad Hoc Cloud Infrastructure
Because most cloud platforms are quite unopinionated about the organization of
resources, a company’s cloud fleet might have been assembled in an ad hoc man‐
ner. Different application teams define their own conventions and thus the cloud
ecosystem as a whole is riddled with inconsistencies. Each approach will surely
have its justifications, but the lack of standardization makes it hard for someone
to understand the bigger picture.

This will frequently happen where a company’s use of the cloud has evolved over
time. Best practices were likely undefined at first and only emerged over time.

Shared Cloud Resources
Sharing resources, such as security groups, between applications can make it
hard to determine what is a vital infrastructure component and what is cruft.
Cloud resources consume budget. Good conventions that help you keep track of
whether resources are still used can make it easier to streamline your cloud foot‐
print and save money.

The Netflix Cloud Model
Netflix’s approach to cloud infrastructure revolves around naming conventions,
immutable artifacts, and homogeneous server groups. Each application is com‐
posed of one or more server groups and all instances within that server group
run an identical version of the application.

Naming Conventions
Server groups are named according to a convention that helps organize them
into clusters:

<name>-<stack>-<detail>-v<version>

• The name is the name of the application or service.
• The (optional) stack is typically used to differentiate production, staging, and

test server groups.
• The (optional) detail is used to differentiate special-purpose server groups.

For example, an application may run a Redis cache or a group of instances
dedicated to background work.

• The version is simply a sequential version number.

A server group at Netflix consists of one or more homogeneous instances. A
cluster consists of one or more server groups that share the same name, stack,
and detail. A cluster is a Spinnaker concept derived from the naming convention
applied to the server groups within it.

14 | Chapter 3: Managing Cloud Infrastructure

Versioning
Each server group within a cluster typically has a different version of the applica‐
tion on it, and all instances within the server group are homogenous—that is,
they are configured identically and have the same machine image.

Instances within a server group are interchangeable and disposable. Server
groups can be resized up or down to accommodate spikes and troughs in traffic.
Instances that fail can be automatically replaced with new ones.

Usually, only one server group in a cluster is active and serving traffic at any
given time. Others may exist in a disabled state to allow for quick rollbacks if a
problem is detected.

Deploying and Rolling Back
The typical deployment procedure in the Netflix cloud model is a “red/black”
deployment (sometimes known elsewhere as a “blue/green”).

In a red/black deployment, a new server group is added to the cluster, deploying
a newer version of the application. The new server group keeps the name, stack,
and detail elements, but increments the version number (Figure 3-1).

Figure 3-1. A cluster containing three server groups, two of which are disabled. Note
the full server group name in the panel on the right, along with details about that
server group.

Once deployed and healthy, the new server group is enabled and starts taking
traffic. Only once the new server group is fully healthy does the older server
group get disabled and stop taking traffic.

This procedure means deployments can proceed without any application down‐
time—assuming, of course, that the application is built in such a way that it can
cope with “overlapping” versions during the brief window where old and new
server groups are both active and taking traffic.

The Netflix Cloud Model | 15

If a problem is detected with the new server group, it is very straightforward to
roll back. The old server group is re-enabled and the new one disabled.

Applications will frequently resize the old server group down to zero instances
after a predefined duration. Rolling back from an empty server group is a little
slower, but still faster than redeploying, and has the advantage of releasing idle
instances, saving money and returning instances to a reservation pool where
other applications can use them for their own deployments.

Alternatives to Red/Black Deployment
Variations on this deployment strategy include:

Rolling push
The machine image associated with each instance in a server group is upgra‐
ded and then restarted in turn.

Rolling red/black
The new server group is deployed with zero instances and gradually resized
up in sync with the old server group being resized down, resulting in a grad‐
ual shift of traffic across to the new server group.

Highlander
The old server group is immediately destroyed after being disabled. The
name comes from the 1985 movie of the same name, where “There can be
only one”! This strategy is usually only used for test environments.

Self-Service
Adopting consistent conventions enables teams to manage their own cloud infra‐
structure. At Netflix, there is no centralized team managing infrastructure. Teams
deploy their own services and manage them once they go live.

Cross-Region Deployments
Deploying an application in multiple regions brings its own set of concerns. At
Netflix, many externally facing applications are deployed in more than one
region in order to optimize latency between the service and end users.

Reliability is another concern. The ability to reroute traffic from one region to
another in the event of a regional outage is vital to maintaining uptime. Netflix
even routinely practices “region evacuations” in order to ensure readiness for a
catastrophic EC2 outage in an individual region.

Ensuring that applications are homogeneous between regions makes it easier to
replicate an application in another region, minimizing downtime in the event of

16 | Chapter 3: Managing Cloud Infrastructure

having to switch traffic to another region or to serve traffic from more than one
region at the same time.

Active/Passive
In an active/passive setup, one region is serving traffic and others are not. The
inactive regions may have running instances that are not taking traffic—much
like a disabled server group may have running instances in order to facilitate a
quick rollback.

Persistent data may be replicated from the active region to other regions, but the
data will only be flowing one way, and replication does not need to be
instantaneous.

Active/Active
An active/active setup has multiple regions serving traffic concurrently and
potentially sharing state via a cross-region data store. Supporting an active/active
application means enabling connectivity between regions, load-balancing traffic
across regions, and synchronizing persistent data.

Multi-Cloud Configurations
Increasing the level of complexity still further, more and more companies are
now using more than one cloud platform concurrently. It’s not unusual to have
deployments in EC2 and ECS, for example. There are even companies using dif‐
ferent platforms for their production and test environments.

Even if you’re currently using only one particular cloud, there’s always the poten‐
tial for an executive decision to migrate from one provider to another.

The concepts used by each cloud platform have subtle differences and the tools
provided by each cloud vary greatly.

The Application-Centric Control Plane
Not only do the tools vary across cloud platforms, but the way they are organized
is typically resource type centric rather than application centric.

For example, in the AWS console, if you need to manage instances, server groups
(autoscaling groups in EC2), security groups, and load balancers, you’ll find they
are organized into entirely separate areas of the console. If your application also
spans multiple regions and/or accounts, you’ll find that there’s an awful lot of
clicking around different menus to view the resources for a given application.
Each account requires its own login and each region is managed by its own sepa‐
rate console.

Multi-Cloud Configurations | 17

That arrangement may make sense if you have a centralized infrastructure team
managing the company’s entire cloud fleet. However, if you’re having each appli‐
cation team manage their own deployments and infrastructure, a single control
plane that is organized around their application is much more useful. In an
application-centric control plane, all the resources used by an application are
accessible in one place, regardless of what region, account, or even cloud they
belong to (Figure 3-2).

Figure 3-2. A Spinnaker view showing clusters spanning multiple EC2 accounts and
regions. Load balancers, security groups, and other aspects are accessible directly
from this view.

Such a control plane can link out to external systems for metrics monitoring or
provide links to ssh onto individual instances.

Multi-Cloud Applications
Applications that deploy resources into multiple clouds will benefit from com‐
mon abstractions, such as those that Spinnaker provides. For example, an
autoscaling group in EC2 is analogous to a managed instance group in GCE or a
ReplicaSet in Kubernetes, an EC2 security group is comparable to a GCE firewall,
and so on.

With common abstractions, an application-centric control plane can display
resources from multiple clouds alongside one another. Where differences exist
they are restricted to more detailed views.

18 | Chapter 3: Managing Cloud Infrastructure

Spinnaker abstracts specific resources to facilitate multi-cloud deployment. There
are many other services provided by each cloud provider that Spinnaker does not
have abstractions for (and may not know about).

Summary
One of the main challenges in managing cloud resources across accounts,
regions, and cloud providers is consistency. Most control planes are built with 50
or 100 resources in mind and break down when that number grows to 1,000,
10,000, or 100,000 resources that need to be tracked. Best practices in cross-
region and cross-account resiliency means an explosion of resources across the
typical cloud-provider account/region boundary.

By introducing an application-centered naming convention that aggressively fil‐
ters the number of resources presented to maintainers, we can make it easier to
notice things that are awry and manually fix them. This standardization is useful
for teams managing applications as well as centralized teams working on cloud
tooling.

Summary | 19

CHAPTER 4

Structuring Deployments as Pipelines

In this chapter you’ll learn about the benefits of structuring your deployments
out of customizable pieces, the parts of a Spinnaker pipeline, and how codifying
and iterating on your pipeline can help reduce the cognitive load of developers.
At the end of this chapter, you should be able to look at a deployment process
and break down different integration points into specific pipeline parts.

Benefits of Flexible User-Defined Pipelines
Most deployments consist of similar steps. In many cases, the code must be built
and packaged, deployed to a test environment, tested, and then deployed to pro‐
duction. Each team, however, may choose to do this a little differently. Some
teams conduct functional testing by hand whereas others might start with auto‐
mated tests. Some environments are highly controlled and need to be gated with
an approval by a person (manual judgment), whereas others can be updated
automatically whenever there is a new change.

At Netflix, we’ve found that allowing each team to build and maintain their own
deployment pipeline from the building blocks we provide lets engineers experi‐
ment freely according to their needs. Each team doesn’t have to develop and
maintain their own way to do common actions (e.g., triggering a CI build, figur‐
ing out which image is deployed in a test environment, or deploying a new server
group) because we provide well-tested building blocks to do this. Additionally,
these building blocks work for every infrastructure account and cloud provider
we have. Teams can focus on iterating on their deployment strategy and building
their product instead of struggling with the cloud.

21

Spinnaker Deployment Workflows: Pipelines
In Spinnaker, pipelines are the key workflow construct used for deployments.
Each pipeline has a configuration, defining things like triggers, notifications, and
a sequence of stages. When a new execution of a pipeline is started, each stage is
run and actions are taken.

Pipeline executions are represented as JSON that contains all the information
about the pipeline execution. Variables like time started, parameters, stage status,
and server group names all appear in this JSON, which is used to render the UI.

Pipeline Stages
The work done by a pipeline can be divided into smaller, customizable blocks
called stages. Stages are chained together to define the overall work done as part
of the continuous delivery process. Each type of stage performs a specific opera‐
tion or series of operations. Pipeline stages can fall into four broad categories.

Infrastructure Stages
Infrastructure stages operate on the underlying cloud infrastructure by creating,
updating, or deleting resources.

These stages are implemented for every cloud provider where applicable. This
means that if your organization leverages multiple clouds, you can deploy to each
of them in a consistent way, reducing cognitive load for your engineers.

Examples of stages of this category include:

• Bake (create an AMI or Docker image)
• Tag Image
• Find Image/Container from a Cluster/Tag
• Deploy
• Disable/Enable/Resize/Shrink/Clone/Rollback a Cluster/Server Group
• Run Job (run a container in Kubernetes)

Bake stages take an artifact and turn it into an immutable infrastructure primi‐
tive like an Amazon Machine Image (AMI) or a Docker image. This action is
called “baking.” You do not need a bake step to create the images you will use—it
is perfectly fine to ingest them into Spinnaker in another way.

Tag Image stages apply a tag to the previously baked images for categorization.
Find Image stages locate a previously deployed version of your immutable infra‐
structure so that you can refer to that same version in later stages.

The rest of the infrastructure stages operate on your clusters/server groups in
some way. These stages do the bulk of the work in your deployment pipelines.

22 | Chapter 4: Structuring Deployments as Pipelines

External Systems Integrations
Spinnaker provides integrations with custom systems to allow you to chain
together logic performed on systems other than Spinnaker.

Examples of this type of stage are:

• Continuous Integration: Jenkins/TravisCI
• Run Job
• Webhook

Spinnaker can interact with Continuous Integration (CI) systems such as Jenkins.
Jenkins is used for running custom scripts and tests. The Jenkins stage allows
existing functionality that is already built into Jenkins to be reused when migrat‐
ing from Jenkins to Spinnaker.

The custom Webhook stage allows you to send an HTTP request into any other
system that supports webhooks, and read the data that gets returned.

Testing
Netflix has several testing stages that teams can utilize. The stages are:

• Chaos Automation Platform (ChAP) (internal only)
• Citrus Squeeze Testing (internal only)
• Canary (open source)

The ChAP stage allows us to check that fallbacks behave as expected and to
uncover systemic weaknesses that occur when latency increases.

The Citrus stage performs squeeze testing, directing increasingly more traffic
toward an evaluation cluster in order to find its load limit.

The Canary stage allows you to send a small amount of production traffic to a
new build and measure key metrics to determine if the new build introduces any
performance degradation. This stage is also available in OSS. These stages have
been contributed by other Netflix engineers to integrate with their existing tools.

Additionally, functional tests can also be run via Jenkins.

Controlling Flow
This group of stages allows you to control the flow of your pipeline, whether that
is authorization, timing, or branching logic. The stages are:

• Check Preconditions
• Manual Judgment
• Wait
• Run a Pipeline

Pipeline Stages | 23

The Check Preconditions stage allows you to perform conditional logic. The
Manual Judgment stage pauses your pipeline until a human gives it an OK and
propagates their credentials. The Wait stage allows you to wait for a custom
amount of time. The Pipeline stage allows you to run another pipeline from
within your current pipeline. With these options, you can customize your pipe‐
lines extensively.

Triggers
The final core piece of building a pipeline is how the pipeline is started. This is
controlled via triggers. Configuring a pipeline trigger allows you to react to
events and chain steps together. We find that most Spinnaker pipelines are set up
to be triggered off of events. There are several trigger types we have
found important:

Time-based triggers:

• Manual
• Cron

Event-based triggers:

• Git
• Continuous Integration
• Docker
• Pipeline
• Pub/Sub

Manual triggers are an option for every pipeline and allow the pipeline to be run
ad hoc. Cron triggers allow you to run pipelines on a schedule.

Most of the time you want to run a pipeline after an event happens. Git triggers
allow you to run a pipeline after a git event, like a commit. Continuous Integra‐
tion triggers (Jenkins, for example) allow you to run a pipeline after a CI job
completes successfully. Docker triggers allow you to run a pipeline after a new
Docker image is uploaded or a new Docker image tag is published. Pipeline trig‐
gers allow you to run another pipeline after a pipeline completes successfully.
Pub/Sub triggers allow you to run a pipeline after a specific message is received
from a Pub/Sub system (for example Google Pub/Sub, or Amazon SNS).

With this combination of triggers, it’s possible to create a highly customized
workflow bouncing between custom scripted logic (run in a container, or
through Jenkins) and the built-in Spinnaker stages.

24 | Chapter 4: Structuring Deployments as Pipelines

1 www.spinnaker.io

Notifications
Workflows that are automatically run need notifications to broadcast the status of
events. Spinnaker pipelines allow you to configure notifications for pipeline start,
success, and failure. Those same notification options are also available for each
stage. Notifications can be sent via email, Slack, Hipchat, SMS, and Pub/Sub
systems.

Expressions
Sometimes the base options aren’t enough. Expressions allow you to customize
your pipelines, pulling data out of the raw pipeline JSON. This is commonly used
for making decisions based on parameters passed into the pipeline or data that
comes from a trigger.

For example, you may want to deploy to a test environment from your Jenkins
triggered pipeline when your artifact name contains “unstable,” and to prod
otherwise. You can use expressions to pull the artifact name that your Jenkins job
produced and use the Check Preconditions stage to choose the branch of your
pipeline based on the artifact name. Extensive expression documentation is avail‐
able on the Spinnaker website.1

Exposing this flexibility to users allows them to leverage pipelines to do exactly
what they want without needing to build custom stages or extend existing ones
for unusual use cases, and gives engineers the power to iterate on their work‐
flows.

Version Control and Auditing
All pipelines are stored in version control, backed by persistent storage. We have
found it’s important to have your deployments backed by version control because
it allows you to easily fix things by reverting. It also gives you the confidence to
make changes because you know you’ll be able to revert if you cause a regression
in your pipeline.

We have also found that auditing of events is important. We maintain a history of
each pipeline execution and each task that is run. Spinnaker events, such as a new
pipeline execution starting, can be sent to a customizable endpoint for aggrega‐
tion and long-term storage. Our teams that deal with sensitive information use
this feature to be compliant.

Notifications | 25

http://www.spinnaker.io

Example Pipeline
To tie all these concepts together we will walk through an example pipeline, pic‐
tured in Figure 4-1.

Figure 4-1. A sample Spinnaker deployment pipeline.

This pipeline interacts with two accounts, called TEST and PROD. It consists of a
manual start, several infrastructure stages, and some stages that control the flow
of the pipeline. This pipeline represents the typical story of taking an image that
has already been deployed to TEST (and tested in that account), using a canary to
test a small amount of production traffic, then deploying that image into PROD.
This pipeline takes advantage of branching logic to do two things simultaneously.

This pipeline finds an image that is running in the TEST account and then
deploys a canary of that image to the PROD account. The pipeline then waits for
the canary to gather metrics, and also waits for manual approval. Once both of
these actions complete (including a user approving that the pipeline should con‐
tinue) a production deployment proceeds using the “red/black” strategy dis‐
cussed in Chapter 3 (old instances are disabled as soon as new instances come
up). The pipeline stops the canary after the new production server group is
deployed, and waits two hours before destroying the old production
infrastructure.

This is one example of constructing a pipeline from multiple stages. Structuring
your deployment from stages that handle the infrastructure details for you lowers
the cognitive load of the users managing the deployments and allows them to
focus on other things.

Jenkins Pipelines Versus Spinnaker Pipelines

We often receive questions about the difference between Jenkins pipe‐
lines and Spinnaker pipelines. The primary difference is what happens
in each stage. Spinnaker stages, as you’ve just seen, have specifically
defined functionality and encapsulate most cloud operations. They are
opinionated and abstract away cloud specifics (like credentials and
health check details). Jenkins stages have no native support for these
cloud abstractions so you have to rely on plug-ins to provide it. We have
seen teams use Spinnaker via its REST API to provide this functionality.

26 | Chapter 4: Structuring Deployments as Pipelines

Summary
In this chapter, we have seen the value of structuring deployment pipelines out of
customizable and reusable pieces. You learned the building blocks that we find
valuable and how they can be composed to follow best practices for production
changes at scale.

Pipelines are defined in a pipeline configuration. A pipeline execution will hap‐
pen when that particular configuration is invoked either manually or via a trig‐
ger. As a pipeline runs, the pipeline will transition across the stages and do the
work specified by each stage. As stages run, notifications or auditing events will
be invoked depending on stages starting, finishing, or failing. When this pipeline
execution finishes, it can trigger further pipelines to continue the deployment
flow.

As more functionality is added into Spinnaker, new stages, triggers, or notifica‐
tion types can be added to support the new features. Teams can easily change and
improve their deployment processes to use these new features while continuing
to use best practices.

Summary | 27

CHAPTER 5

Working with Cloud VMs: AWS EC2

Now that you have an understanding of continuous deployment and the way that
Spinnaker structures deployments as pipelines, we will dive into the specifics of
working with cloud VMs, using Amazon’s EC2 as an example.

For continuous deployment into Amazon’s EC2 virtual machine–based cloud,
Spinnaker models a well-known set of operations as pipeline stages. Other VM-
based cloud providers have similar functionality.

In this chapter, we will discuss how Spinnaker approaches deployments to Ama‐
zon EC2. You will learn about the distinct pipeline stages available in Spinnaker
and how to use them.

Baking AMIs
Amazon Machine Images, or AMIs, can be thought of as a read-only snapshot of
a server’s boot volume, from which many EC2 instances can be launched.

In keeping with the immutable infrastructure pattern, every release of a service
deployed via Spinnaker to EC2 first requires the creation (or baking) of a new
AMI. Rosco is the Spinnaker bakery service. Under the hood, Rosco uses Packer,
an extensible open source tool developed by HashiCorp, for creating machine
images for all of the cloud platforms Spinnaker supports.

A Bake stage is typically the first stage in a Spinnaker pipeline triggered by an
event, such as the completion of a Jenkins build or a GitHub commit Figure 5-1.
Rosco is provided information about the artifact that is the subject of the bake,
along with the base AMI image that forms the foundation layer of the new image.
After the artifact is installed on top of a copy of the Base AMI, a new AMI is pub‐
lished to EC2, from which instances can be launched.

29

Figure 5-1. A Bake stage config for the service clouddriver at Netflix.

At Netflix, most services running in EC2 are baked on top of a common Base
AMI containing an Ubuntu OS with Netflix-specific customizations. We like this
approach for faster, more consistent bakes versus applying a configuration man‐
agement system (such as puppet or chef) at bake time.

Tagging AMIs
By following a Bake stage with a Tag Image stage in the same pipeline, you can
tag newly created AMIs for greater control over how they are deployed.

Suppose you have a CI system that builds each commit to any git branch, then
triggers a Spinnaker bake pipeline. The resulting AMI can be tagged with the
branch name (provided as a trigger parameter) and deployed to a server group
also including the branch name (i.e., myservice-test-mybranch-v001) for testing.
Pipelines intended to shepherd a build to the production environment can be
configured to ignore branch-tagged AMIs or to look for a specific tag such
as master or release.

Deploying in EC2
Setting up an EC2 deployment pipeline for the first time can seem overwhelm‐
ing, due to the wealth of options available. The Basic Settings cover AWS account
and region, as well as server group naming and which deployment strategy to
use, both discussed in Chapter 3.

If you have more than one VPC subnet configured, you can select that here
(Figure 5-2). It’s good practice to separate internet-facing and internal services
into different subnets, as well as production versus developer environments.

30 | Chapter 5: Working with Cloud VMs: AWS EC2

Figure 5-2. Basic EC2 deployment settings.

EC2 provides several native load-balancer options to route traffic to new instan‐
ces. Spinnaker supports the newer ALB type via the Target Groups dropdown, as
well as the original ELB type, labeled Classic Load Balancers. If you’re starting
from scratch, the ALB type provides improved performance over ELB, while also
supporting Layer 7 routing features.

Add your server group to one or more security groups, and select an instance
type and the number of instances to deploy (or min/max/desired if you plan to
use autoscaling). That may be all the configuration required.

Deploying in EC2 | 31

Availability Zones
Scrolling further down in the deployment configuration wizard reveals the ability
to customize how instances are distributed across Availability Zones (AZs)
within a region. By default, Spinnaker launches server groups that automatically
balance instances across several AZs for greater resiliency.

By disabling AZ balancing, you can pin all instances in a server group to a single
AZ. At Netflix, we typically use automatic balancing with stateless services but
disable it for persistent services where AZs and region redundancy are handled
more deliberately.

Health Checks
Spinnaker needs to know when a service is healthy in order to deliver safe
deployments. When deploying a server group via a red/black or Highlander
strategy, you don’t want the original server group to be disabled or terminated
before the new server group is actually healthy and taking traffic.

For EC2, it is not enough to just look at the up and down state of the instances in
the server group. EC2 will mark an instance as up as soon as it boots up with a
network stack; this often occurs before underlying processes like Tomcat are
ready to serve requests. In order to safely orchestrate the enabling and disabling
of server groups, we must rely on secondary health check mechanisms such as
the ones from load balancers and service discovery systems.

For services sitting behind an ELB or ALB in EC2, Spinnaker and the EC2
autoscaler can share the load balancer’s view of application health. When config‐
uring a load-balancer health check, be sure to monitor an endpoint that is inex‐
pensive to serve, yet accurately reflects an application’s ability to serve requests.

Spinnaker also integrates with service discovery systems. Service discovery sup‐
port is pluggable, but Netflix’s open source Eureka platform remains the best-
supported discovery platform on AWS. If Eureka integration is enabled,
Spinnaker automatically sees if an application registers with it, and will check if
individual instances are registered as up when determining health. Spinnaker
also supports and integrates with Consul for other cloud providers.

Advanced Configuration
Spinnaker enables users to configure additional resources associated with the
launch configuration in AWS (Figure 5-3). Advanced deployment settings also
provide the ability to pass UserData to instances at launch time, assign custom
IAM roles, customize Block Device Mappings, and more.

32 | Chapter 5: Working with Cloud VMs: AWS EC2

Figure 5-3. Advanced deployment settings.

Autoscaling
Spinnaker supports two types of EC2 autoscaling policies: Step and Target Track‐
ing. Step policies are rule based, such as “If Average CPU Utilization > 50% for 2
minutes, add 1 instance; if >75%, add 3 instances.”

Target Tracking policies are a more recent AWS feature (Figure 5-4). They’re sim‐
pler to configure and more responsive to sudden load changes. A Target Tracking

Autoscaling | 33

policy is based on a single metric and its target value. The autoscaler continu‐
ously monitors the metric and scales the server group to keep the metric as close
as possible to its target.

Figure 5-4. Creating an EC2 Target Tracking policy in Spinnaker.

Only the size constraints for a server group (defining minimum, maximum, and
desired instance counts for the autoscaler) can be defined within a Spinnaker
Deploy stage. To define an actual scaling policy, make sure you have at least one
server group deployed within the cluster that you’d like to autoscale. Select the
most recent server group, then expand the Scaling Policies section of the right bar
to reveal the “Create a new scaling policy” link.

Once a scaling policy has been created, it will automatically be copied over to
new server groups deployed within that cluster. However, if all server groups
within a cluster are deleted, the scaling policy will have to be redefined. To
improve that experience, EC2 scaling policy management is an initial feature of
Spinnaker’s nascent Declarative Delivery initiative, discussed later on in this
report.

34 | Chapter 5: Working with Cloud VMs: AWS EC2

Summary
In this chapter, we discussed how Spinnaker simplifies the creation of images via
a bake, tagging, and deployment to Amazon EC2. This same pattern can apply to
similar virtual machine–based systems like cloud providers such as Google Com‐
pute Engine and Microsoft Azure.

Deployment to EC2 is not only restricted to creating a new server group. Spin‐
naker also needs to manage autoscaling and health checks during the deploy and
rollback cycles in the continuous deployment process. By doing the heavy lifting
around these operations, it takes the cognitive burden of managing them away
from users. Spinnaker’s application-centric view of infrastructure management
helps group commonly needed resources in a way that simplifies interactions
with the resources.

Summary | 35

CHAPTER 6

Kubernetes

In the previous chapter you learned about the specifics of VM-based deploy‐
ments using Amazon’s EC2 instances as an example.

In this chapter you’ll learn what makes continuous delivery (CD) pipelines to
Kubernetes different from CD pipelines to VM-based clouds. You’ll also learn
what your organization needs to consider when designing a CD pipeline for
Kubernetes, and how tooling such as Spinnaker helps you.

What Makes Kubernetes Different
Whether you are migrating workloads to Kubernetes, or Kubernetes is your first
step into cloud deployments, it’s good to know what makes Kubernetes different,
from a CD perspective. This is especially true because most existing knowledge
and tooling comes from deployments to VM-based clouds.

Faster
Deployments to Kubernetes are generally much faster. Provisioning resour‐
ces in Kubernetes takes seconds, while provisioning a VM can take minutes.
This means your developers can very quickly deploy to a live cluster, and it
takes less time to create testing environments and promote releases through
staging environments. In short: time spent waiting for infrastructure to pro‐
vision is less of a concern when deploying to Kubernetes.

Declarative
Kubernetes uses manifest files to provide a declarative description of your
infrastructure—it’s central to how Kubernetes works. Everything you provi‐
sion and deploy, from the containers you run to the network policies govern‐
ing traffic, are described in YAML. Kubernetes always tries to reach the state
you have specified using its own orchestration, rolling out binary changes or
changing routing rules as needed. This provides you with easier recoverabil‐

37

ity, the ability to code review changes to your infrastructure, and a higher
level of abstraction over your underlying cloud resources.

Multi-cloud
Whether Kubernetes is running in Google’s cloud or Amazon’s, in your on-
premise datacenter or on your laptop, it exposes the same interface and
behavior for running your workloads. This makes it trivial to deploy the
same application to multiple clouds and regions, when you can treat each as
being identical. This also makes it much easier to create staging and devel‐
oper environments that model production.

Native deployment orchestration
When a change is submitted to a running Kubernetes workload, it orches‐
trates a rollout of your change according to policies you specify. In some
cases, this becomes the only deployment orchestration that you need, and
can be carried out independently of the delivery platform that you choose.

Considerations
In the context of Kubernetes, it is common to ask why delivery tooling is needed
on top of native Kubernetes deployment orchestration. After all, rolling out a
binary or configuration change can be done with a single command using the
Kubernetes command-line interface, kubectl. However, it can be desirable to
have first-class distinctions between “production” and “staging” environments,
access-control configuration per application, support for ingesting events from
Docker registries, cross-cluster orchestration, and many more features you’d have
to build on top of Kubernetes yourself.

There are many ways to configure your delivery pipelines to Kubernetes—too
many to enumerate here. Instead, we’ll list some considerations you should make
when designing these pipelines, as well as ways in which tools such as Spinnaker
can help enforce best practices, and automate the complicated and/or laborious
parts of your delivery pipelines.

How Are You Building Your Artifacts?
Before you can deploy your code, it needs to be built into a Docker image. You
might also be using a templating system, such as Helm, or Ksonnet, to create
your manifests. These templates need to be hydrated before they are deployed.
Generally, we consider the creation of these artifacts to be a part of your continu‐
ous integration (CI) pipeline, which will provide the artifacts it creates to your
CD pipelines to deploy. Typically, this represents the separation of concerns
between CI and CD: CI produces and validates artifacts, while CD deploys them.
However, it’s worth keeping in mind that the intersection between CI and CD is
not always perfectly clear, and varies between teams and organizations.

38 | Chapter 6: Kubernetes

Spinnaker provides integrations with CI systems such as Jenkins and Travis CI, as
well as a wide range of Docker registries, from DockerHub to Google Container
Registry (GCR), to trigger your pipelines. On top of that, more flexible payloads
can be delivered to Spinnaker to trigger pipelines using webhooks or Pub/Sub. As
mentioned before, the intersection between CI and CD may be different in your
organization. To accommodate this, Docker images can be baked using Spinnak‐
er’s first-class Bake Image stage, and arbitrary manifest templates can be hydrated
using Spinnaker’s Run Job stage.

Is Your Deployed Configuration and Image Versioned?
When a team is deploying configuration and code that they own, it is important
that they can identify exactly what they have running in their cluster at a certain
point in time, as well as have the ability to roll back changes with confidence.
This is only possible when the configuration and code that is running is uniquely
identifiable each time it is deployed. The key advantage to practicing this is hav‐
ing repeatability of deployments, and auditability of your environment.

Docker images can be identified by a “tag” and a “digest.” A tag can be applied by
a user, and the image it refers to can be changed. For this reason, deploying an
image by its tag is problematic—the image it refers to can change over time. The
digest is a content-based hash of the image, so it will always uniquely identify an
image, making it the preferred way to refer to images. Spinnaker always deploys
an image by its digest if possible, but also supports ingesting events from Docker
registries and build systems that describe images by both their tag and digest.

Kubernetes supports deploying configuration in a ConfigMap resource. The con‐
tents can be mounted by an application in either environment variables or a vol‐
ume. By default, changes to an existing ConfigMap’s contents do not change the
ConfigMap’s identifier, meaning each revision of the ConfigMap is not uniquely
identifiable. This can be useful when this configuration needs to be hot-reloaded,
or when the configuration’s lifecycle is independent of the application (such as a
database connection URL). However, in other cases, configuration changes need
to be versioned to be rolled back. To allow for this, Spinnaker automatically
assigns versions to configuration resources, and injects them into an application
when deployed.

Should Kubernetes Manifests Be Abstracted from Your Users?
Kubernetes manifest files can be confusing to anyone not familiar with Kuber‐
netes. It can be argued that while developers should control how their code rea‐
ches production, they don’t need to know all the details of the manifests used by
the underlying infrastructure they depend on.

While this isn’t always the case, one option is to rely on templates, configured by
a specialist team, that require a few variables for use in hydrating manifest files

Considerations | 39

that define an application. Another option is provided by the Kubernetes pro‐
vider V1 in Spinnaker, which lays out manifest configuration options in a tooltip
annotated UI, and provides context-driven dropdowns wherever possible. Both
options reduce the burden on developers that are not, and do not need to be,
Kubernetes experts.

When Is a Deployment “Finished”?
Most introductions to Kubernetes rely on its command-line interface kubectl. In
embracing Kubernetes’s declarative approach to infrastructure management, sub‐
mitting a changed manifest using kubectl returns as soon as Kubernetes accepts
the manifest. However, this does not imply that the desired changes have been
made. Kubernetes might still be rolling out the change, waiting for health checks
to pass, or attaching a disk waiting for quota to arrive. None of these are guaran‐
teed to ever complete. It is important that the tooling you choose does not pre‐
maturely assume that a manifest change was applied.

Spinnaker has policies built in for each kind of Kubernetes resource, ranging
from ensuring that all health checks pass in a deployment resource, to waiting
until a deployed volume claim binds the storage it has requested. These may
seem trivial, but they prevent you from having to write custom logic, and they
ensure that your pipelines don’t succeed until your changes have successfully
been rolled out.

How Do You Handle Recoverability?
If an application is defined as a set of manifests, and the cluster it is running on is
lost, one can quickly recover it by redeploying those manifests to a new cluster
behind the same load balancer. However, this gets complicated when an applica‐
tion has dependencies on other applications in that cluster, or when manifests are
stored as templates where some properties (such as the version of your Docker
image) aren’t known until they are deployed.

There are two options for providing recoverability:

1. Periodically snapshot the state of your cluster, capturing the definitions of all
running manifests. This is conceptually simple and provides a clean state to
restart your cluster from. But you might capture states where deployed man‐
ifest definitions are “bad” (health checks are about to fail, resources can’t be
allocated).

2. Only record changes in your backup for a manifest when its deployment fin‐
ishes, as described earlier. Spinnaker makes this easy by emitting the fully
hydrated manifest from every pipeline that deploys it to Spinnaker’s event
bus, which can forward events to a range of systems.

40 | Chapter 6: Kubernetes

Summary
The considerations discussed in this chapter, read with an understanding of your
organization’s needs, should help clarify how to build your CD pipelines to
Kubernetes. Above all, the tooling you choose to support and express these pipe‐
lines should ultimately make deployments as simple and boring to your develop‐
ers as possible. However, that will take effort, careful design, and the right tools to
accomplish.

Summary | 41

CHAPTER 7

Making Deployments Safer

So far we have explored moving to the cloud, structuring deployments as pipe-
lines, and the specifics and considerations of deployment for VMs and containers.

The ultimate goal of embracing continuous delivery is to allow users to deploy
software quickly and automatically. A big part of making this practice successful
is to be able to push new code without fear. Automation is great, but it is better if
there are proper safeguards to ensure we never get into a state where systems are
down and customers are negatively impacted.

In this chapter, we will catalog some of the techniques, actions, and practices that
were added to Spinnaker with the goal of making deployments safer.

Cluster Deployments
The following types of safeguards ensure that new versions of software can be
added and removed safely. In Spinnaker’s cloud model, where new server groups
in a cluster are mapped to software versions, we can add additional checks to
ensure availability.

Deployment strategies
Out of the box, Spinnaker comes with four deployment strategies:

Red/black
Enables next server group, disables last one.

Rolling red/black
Same as above, but in incremental percentages, i.e., 25%, 50%, 100%.

Highlander
Destroys all server groups except current active one; there can be only
one.

43

Custom
User-defined.

You can also choose to not have a deployment strategy, in which case a new
server group would just be created alongside the existing one. Deployment
strategies increase safety by only removing server groups once the new one is
active and ready.

Under the hood, deployment strategies like red/black and rolling red/black
also interact with autoscalers to ensure that capacity dimensions are pre‐
served across the deployment and server groups don’t become over- or
underprovisioned throughout the deployment.

Easy rollbacks
It should be easy to revert changes if an issue has been encountered. Spin‐
naker does this by offering an action where a server group can be quickly
rolled back to the previous state (Figure 7-1). As a rollback happens, it will
first ensure that the previous server group is properly sized and taking traffic
before disabling the bad version.

Figure 7-1. Rollback dialog.

44 | Chapter 7: Making Deployments Safer

In the dialog in Figure 7-1, you will see that all the operations that an auto‐
mated rollback performs are explicitly listed for the operator under the Roll‐
back Operations header.

Rolling back can be a long-running process and is usually performed under
duress. Before Spinnaker, all those individual steps would also have been
taken manually. The person rolling back would have to check that the num‐
ber of instances looks OK before deactivating the old cluster. Now, they just
push a button and Spinnaker does the work for them.

Cluster locking
When a new server group is being added to a cluster, Spinnaker creates a
protective bubble around it. If a conflicting server group is asked to be cre‐
ated at the same time in the same region and cluster, Spinnaker will wait
until the first server group has finished deploying and releases its lock. This
cluster locking and exclusion feature prevent automated pipelines or manual
tasks from accidentally acting on the same resources.

Traffic guards
Traffic guards ensure there is always at least one active server group. If some‐
one tries to disable or destroy the last active server group, the traffic guard
will activate and protect the server group. Instead of allowing the action to
occur, Spinnaker will err on the side of safety and fail the action instead of
disabling or destroying the server group, potentially causing dangerous
downtime.

Deployment windows
This is the ability to control the time of day and day of the week during
which a deployment can take place (Figure 7-2). There are times of peak traf‐
fic—for example, when people are watching Netflix at home after work—
when it may not make sense to push out new code. Deployment windows
allow pipelines to ensure deployments happen outside of these times of peak
traffic so if any errors do happen, they impact the fewest people possible. You
can also use this feature to deploy only during business hours.

Cluster Deployments | 45

Figure 7-2. An example of a deployment window configuration in Spinnaker with
corresponding traffic overlay.

Pipeline Executions
The following set of safeguards are attached to the execution of pipelines and the
control flow of artifacts and behavior. Some of these safeguards were mentioned
previously in Chapter 4.

Pipeline concurrency
Having multiple executions of the same pipeline at the same time can have
unintended consequences as they try to modify the same set of clusters or
run the same set of downstream tests or scripts. By default, new executions
will wait for the existing executions to finish before starting. This, of course,
can be customized.

Locking pipelines
Locking a pipeline prevents edits to its configuration through the Spinnaker
UI. This is super useful when the pipeline itself is being managed and gener‐
ated by an external system programmatically.

46 | Chapter 7: Making Deployments Safer

Disabling pipelines
You can also disable a pipeline when it is undergoing temporary mainte‐
nance, when it is unsafe to push, or because the pipeline has been decommis‐
sioned. Disabling a pipeline will also turn off all the automated triggers.

Manual judgment
This functionality will interrupt the pipeline execution and ask the user if
they want to continue the execution or cancel it. It also gives an operator the
ability to make a choice, for example, to run a rollback branch or run addi‐
tional tests. This stage is particularly useful when there is a human process
involved in the pipeline; for example, a QA person checking results from
additional systems (Figure 7-3).

Figure 7-3. An example of a manual judgment in action. This is a detailed view
of the Spinnaker Manual Judgment stage, which allows you to provide text and
options around the choice you’re making.

Conditional stage execution
In some cases, additional tasks need to be executed depending on the con‐
text. For example, a Jenkins job might need to be run to update a system of
record only when a pipeline is triggered by a git push to the master branch.
Spinnaker has a “Conditional on Expression” field in every stage that allows
you to turn a stage on or off. This functionality can be used to improve safety
by running additional checks or post-processing depending on the trigger or
the results of intermediate stages.

Authorization propagation
For security reasons, it may be necessary to restrict deployments in sensitive
accounts to only a subset of users. You might not want to let everyone deploy

Pipeline Executions | 47

1 http://www.oreilly.com/webops-perf/free/chaos-engineering.csp

to accounts containing sensitive billing or user data. In Spinnaker, you can
set up accounts that only allow deployments that have been approved by a
user with the right permissions. Pipelines for these type of accounts can still
be automatically triggered, but they will alert the team at the point of appro‐
val, and the person with the right permission can then decide if they want it
to move forward or cancel the process.

Rollback pipelines
Pipelines can be configured to be triggered by the failure of another pipeline.
In this scenario, a rollback pipeline might run additional tasks to restore the
infrastructure to an expected state or do additional cleanup.

Tag image/Find image from tag
This technique ties into the practice of immutable infrastructure. As an
image (e.g., AWS AMI) is tested, promoted, and validated across different
pipelines and environments, the image is tagged with a seal of approval in
the form of a tag. Subsequent pipelines can then just search for the last image
that passed this approval and continues the validation and promotion cycle.

Automated Validation Stages
Spinnaker also has dedicated pipeline stages to ensure that the deployed resour‐
ces and infrastructure meet predefined criteria before going further.

Conditional checks
There is a Check Preconditions stage that will ensure that downstream stages
only run if a condition has been met (e.g., don’t run teardown tasks if there is
only one server group left).

Automated canary analysis (ACA)
ACA is a technique to minimize the risk of deploying a new version of soft‐
ware into production by comparing metrics emitted from the new version
with the version it intends to replace. This feature will be discussed further in
the next chapter.

Chaos engineering experiments
The idea of chaos experiments is discussed in depth in Chaos Engineering:
Building Confidence in System Behavior Through Experiments (O’Reilly).1 In
Spinnaker, we integrate with Netflix’s internal Chaos Automation Platform
(ChAP) and allow experiments to run as part of pipelines.

48 | Chapter 7: Making Deployments Safer

http://www.oreilly.com/webops-perf/free/chaos-engineering.csp

2 https://github.com/Netflix/chaosmonkey

Chaos Monkey
Spinnaker also has first-class integration with Netflix’s Chaos Monkey,2

which randomly terminates virtual machine instances and containers that
run inside of your production environment. Exposing engineers to failures
more frequently incentivizes them to build resilient services.

Auditing and Traceability
As continuous delivery pipelines can sometimes involve long-running processes,
a key step for making deployments safer is the ability to observe and be notified
of the change.

Notifications
Notifications allow pipelines to quickly alert users when errors occur. Spin‐
naker allows users to configure pipelines and applications to send emails,
SMS, or Slack messages at both stage and pipeline levels (Figure 7-4). This
increases productivity as developers don’t need to constantly refresh their
screens or wait for pipelines to complete.

Figure 7-4. Failed pipeline notification in Spinnaker on Slack channel.

Event stream
Every event performed by the orchestration engine is logged separately from
operational metrics used to power dashboards. This event stream allows for
debugging and analytics. It also allows for later auditing for compliance rea‐
sons. At Netflix, the events are put into a Big Data system for long-term stor‐
age and querying.

Pipeline history
Pipelines retain an automated versioning history and capture when modifi‐
cations were made and who made them. The system also allows you to
restore a pipeline back to a particular version and compare changes between
different pipeline versions. By making it easy and safe to revert pipeline
changes, users don’t need to worry about making changes.

Auditing and Traceability | 49

https://github.com/Netflix/chaosmonkey

Source of server groups
The provenance of every server group is recorded in a searchable tag system.
The details view of a server group shows whether it was created manually or
automatically, with a link to the task or pipeline that created it. This becomes
useful when trying to debug issues days after the actual deployment pipeline
or operation has ended.

Summary
When dealing with a large number of server groups and instances, it is common
to prefer deployments that sacrifice speed for safety. In this chapter, we’ve dis‐
cussed techniques available in Spinnaker to ensure safety across cluster deploy‐
ments and pipeline executions.

We can take advantage of automated validation techniques and testing in produc‐
tion mechanics such as automated canary analysis to further ensure the correct‐
ness of the deployments, gating changes to ensure incorrect software is never
deployed.

50 | Chapter 7: Making Deployments Safer

CHAPTER 8

Automated Canary Analysis

Automated canary analysis (ACA) is an example of an advanced automated test‐
ing technique available as part of the continuous deployment process. It is
included in this report as an example of how many different elements of the con‐
tinuous deployment puzzle—automation, insights, metrics—can be combined to
validate changes in a production environment.

In this chapter, we’ll describe how Spinnaker enables ACA. You’ll learn in detail
about how canaries are set up and supported within a continuous deployment
cycle and gain a deeper understanding of how to take advantage of this
technique.

Canary Release
A canary release is a technique to reduce the risk from deploying a new version
of software into production. A new version of the software, referred to as the
canary, is deployed to a small subset of users alongside the stable running ver‐
sion. Traffic is split between these two versions such that a portion of incoming
requests is diverted to the canary. This approach can quickly uncover any prob‐
lems with the new version without impacting the majority of users.

The quality of the canary version is assessed by comparing key metrics that
describe the behavior of the old and new versions. If there is a significant degra‐
dation in these metrics, the canary is aborted and all of the traffic is routed to the
stable version in an effort to minimize the impact of unexpected behavior.

A canary release should not be used to replace testing methodologies such as unit
or integration tests. The purpose of a canary is to minimize the risk of unexpec‐
ted behavior that may occur under operational load.

51

At Netflix, we augment the standard canary release process and use three differ‐
ent clusters:

• The production cluster. This cluster is unchanged and is the version of the
software that is currently running. It may run any number of instances.

• The baseline cluster. This cluster runs the same version of code as the pro‐
duction cluster. Typically, three instances are created.

• The canary cluster. This cluster runs the proposed code changes. As in the
baseline cluster, three instances are typical.

The production cluster receives the majority of traffic, while the baseline and
canary clusters each receive a small amount. While it’s possible to use the existing
production cluster rather than creating a separate baseline cluster, comparing a
newly created canary cluster to a long-lived production cluster could produce
unreliable results. Creating a brand new baseline cluster ensures that the metrics
produced are free of any effects caused by long-running processes.

Canary Analysis
Once a canary has been released, a decision on how to proceed needs to be made.
This is often performed in a manual, ad hoc manner. For example, a team mem‐
ber may manually inspect logs and graphs. However, this approach requires sub‐
jective assessment and is prone to human bias and errors. In addition, manual
inspection can’t keep up with the speed and shorter delivery time frame of con‐
tinuous delivery.

To address these issues, a more rigorous and automated approach needs to be
taken. This is where ACA can help.

In this approach, key metrics are collected from both the baseline and canary
cluster. These metrics are typically stored in a time-series database with a set of
tags or annotations that identify if the data was collected from the baseline or the
canary. These metrics are then used to determine if there is a significant differ‐
ence between the canary and baseline. Based on these results, a score can be com‐
puted to represent how similar the canary is to the baseline. A decision can then
be made using this score to deploy the canary version to production.

Note that a decision can also be made on any of the individual metric results. For
example, the canary release could be marked as a failure if any of the individual
metrics showed a significant difference between the canary and baseline clusters.

52 | Chapter 8: Automated Canary Analysis

Using ACA in Spinnaker
The Canary stage in Spinnaker can be used to perform ACA. This stage does not
perform any provisioning or cleanup operations for you; those must be config‐
ured elsewhere in your pipeline. The Canary stage is responsible for running one
or more iterations of the canary analysis step. The results of the analysis can be
used to make a decision as to whether to continue the canary, roll back, or, in
some cases, prompt manual intervention to proceed.

Typically, users will set up a Canary stage before a deployment to production. If
the final canary score is below an acceptable threshold, the pipeline will abort
and the deployment to production will not continue.

Setting Up the Canary Stage
Once the infrastructure has been configured for the canary deployment, the Can‐
ary stage can be added to the pipeline as shown in Figure 8-1.

Figure 8-1. Example Spinnaker pipeline with Canary stage.

The Canary stage has a number of properties that control the behavior of the
analysis as shown in Figure 8-2. For example, Config Name refers to a configura‐
tion file that defines the set of metrics to evaluate; the Interval defines how fre‐
quently to retrieve these metrics and run the analysis.

In addition to the analysis parameters, the Canary stage also defines the score
thresholds, which are used to determine if a canary should pass or fail.

Using ACA in Spinnaker | 53

Figure 8-2. Spinnaker canary analysis configuration (ACA).

Reporting
The results of the Canary stage are displayed within the pipeline execution details
as shown in Figure 8-3.

Figure 8-3. Spinnaker canary pipeline execution details.

You can drill down into the details of a canary result and view them in various
ways using the Canary Report. The report gives a breakdown of the results by
metric and displays the input data used for evaluation.

54 | Chapter 8: Automated Canary Analysis

For example, the report in Figure 8-4 shows a canary score of 58%. A number of
metrics were classified as “High” resulting in a lower score. By selecting a specific
metric, you can get a view of the input data used for evaluation.

Figure 8-4. Example Canary Report.

Summary
Continuous delivery at scale necessitates having an ability to release software
changes at high velocity while ensuring deployments rolled out to production are
not just faster but safe as well. Automated canary analysis makes rolling out pro‐
duction deployments safer by reducing manual and ad hoc analysis; only the
most stable releases are deployed to production.

Summary | 55

CHAPTER 9

Declarative Continuous Delivery

Most of the topics in this book have been centered around an imperative meth‐
odology of continuous delivery: telling the system the steps to go through to
reach a desired state. Declarative is another popular and powerful delivery meth‐
odology where the end state is described and the delivery tooling determines the
steps to get there.

In this chapter, you’ll be introduced to the pros and cons of the declarative deliv‐
ery methodology, why teams are interested in its adoption, and the competitive
advantage it provides for your projects, as well as declarative capabilities that will
be offered through Spinnaker. Note that the declarative effort as of this writing is
in development and not generally available.

Imperative Versus Declarative Methodologies
Both imperative and declarative methodologies have their own advantages and
disadvantages that should be considered based on your organization.

An imperative world has a shallow learning curve and you’re capable of iterating
on a delivery pipeline that fits your workflow quickly. Unfortunately, this artisa‐
nal flexibility tends to break down through time and scale: as more projects and
people are added, things will slowly begin to diverge and some delivery pipelines
can stagnate behind the cutting-edge organizational practices. To add insult to
injury, when an imperative workflow does something incorrectly, cleanup and
failure recovery is often manual or imperatively defined as well, which can
quickly become unwieldy.

Declarative, on the other hand, has a steeper learning curve but can scale much
better as an organization grows: changes can be applied across an entire infra‐
structure more easily, and abstractions can be introduced transparently to make
more intelligent decisions on behalf of engineering organizations. Since the

57

1 https://github.com/gogoair/foremast

desired end state is its primary domain, reasoning about a change’s happy path is
greatly simplified.

Existing Declarative Systems
The devops ecosystem is dominated by the declarative tools, oftentimes referred
to as infrastructure as code. Chances are, if you’ve been working in the delivery
space for long, you’re already familiar with some of the more recent, popular
ones:

Ansible
An agentless configuration management system, where you declaratively
define your system configuration through YAML playbooks comprised of
composable tasks and roles.

Terraform
An infrastructure as code tool from Hashicorp that supports a wide variety
of providers and a powerful plug-in system. Highly opinionated, which
makes it easier to pick up and reason about than many of its predecessors.

Kubernetes
A mixed methodology system, supporting imperative management of single
resources, and declarative management of many resources through its mani‐
fest files.

These systems all have different delivery targets and were largely developed at
different times, but because of the attributes of a declarative model are afforded
one killer feature over many imperative systems: planning capability.

This capability isn’t exclusive to declarative systems but since these systems work
in desired end states, we’re more capable of discerning what steps will take place
if a new desired state is applied. In times of peril, having a clear vision of what
will change can be a key informant in avoiding actions that may cause downtime.

In the Spinnaker ecosystem, there’s already been prior work done on the declara‐
tive front, namely in GoGo’s Foremast1 project, as well as Spinnaker’s Managed
Pipeline Templates.

Demand for Declarative at Netflix
We’ve already touched on a couple reasons an organization may want to choose a
declarative methodology: it’s easier to manage at scale, and state changes can be
reviewed ahead of their application. Aside from these, why would Netflix be

58 | Chapter 9: Declarative Continuous Delivery

https://github.com/gogoair/foremast

investing heavily into a declarative methodology, when Spinnaker’s imperative
model has served us so well?

One of the objectives in a declaratively enabled Spinnaker is to reduce automa‐
tion of Spinnaker itself. Over the years of Spinnaker’s life at Netflix, there have
been multiple, redundant efforts of building tooling to make getting started with
Spinnaker faster, or to keep people in sync with evolving delivery best practices.

Some power users are responsible for dozens of applications, an aggregate of
hundreds of pipelines, and thousands of servers. The imperative nature of Spin‐
naker works well for these teams, but maintenance may be someone’s full-time
job. Being able to declaratively define resources—and apply them widely—will
reduce the amount of time people spend in Spinnaker, and allow more time for
building and delivering direct business value.

These power users also tend to establish best practices that other teams want to
adopt: the power users have already gone through the pain of operating resilient
systems in production and codified their lessons into Spinnaker’s pipelines. In
most cases, this means that users need to copy/paste Spinnaker pipelines and
slowly diverge from power-user best practices over time. A declarative manage‐
ment model can make it easier for users to templatize their best practices and
allow teams to opt into and stay in sync with paved road best practices.

Often times after a delivery-induced incident, a team will update their pipeline to
address some new failure, or we’ll add guard rails to help protect users from
downtime. A natural progression of thought is usually: if we’re already telling
Spinnaker what we want our end state to be, why can’t Spinnaker just decide how
to deliver code?

Intelligent Infrastructure
Consider a scenario where an engineer wants to offer an API for other applica‐
tions to consume. In an effort to ship it, they set up security group rules with an
ingress of 0.0.0.0/0 (allow all the things!). A concerning moment for security-
minded engineers.

It’s hard to expect all engineers to be security experts, so it’s understandable why
someone would set up security rules that are irresponsibly lenient. What if there
were an abstraction available to declare the applications and clusters your app
needs to talk to and let the system handle the specifics to make your desired top‐
ology reality?

This is an active effort within Netflix through Declarative Spinnaker, deferring
security logic to our Cloud Security team. The obvious gains here are that teams
get least-privilege security for free, but it also opens up the opportunity for net‐
working, security, and capacity engineers to change cloud topologies, move

Demand for Declarative at Netflix | 59

applications around, and iterate best practices with less (or no) cross-team syn‐
chronization.

Let’s say we have an application named bojackreference and it needs to talk to
the service businessfactory via Netflix-flavored gRPC (which allows us to make
assumptions about ports, and so on). Such an intent could be expressed through
an ApplicationDependency intent, which Spinnaker can send to the Authorizer
application to inform Spinnaker what security rules need to be applied to the
infrastructure to make such a link possible:

kind: ApplicationDependency
schema: "1"
spec:
 application: bojackreference
 dependencies:
 - kind: Application
 spec:
 application: businessfactory
 protocol:
 kind: NetflixGrpc

Authorizer would then tell Spinnaker to converge a security group.

The businessfactory security group must allow ingress from bojackrefer
ence on TCP:433 and TCP:9000. Or is it the bojackreference security group
opens egress to businessfactory on TCP:443 and TCP:9000 and ensures busi
nessfactory has TCP:443 and TCP:9000 open?

Or some other strategy? A service engineer shouldn’t need to stay up to date with
the latest, and security and networking engineers shouldn’t need to cat-herd
application teams: the Authorizer application can change its logic to migrate
networking as Cloud Security best practices evolve over time transparently.

As engineering organizations grow, more teams will emerge that don’t care about
all the knobs and just want to deploy into production following established best
practices. These teams just want to provide their application artifacts and define
some dimensions of their service and have things just work. Teams want Spin‐
naker to be able to take these dimensions and make intelligent decisions on
where to deploy, what cloud provider to deploy to, and when to safely deploy, all
while maintaining the desired performance and cost efficiency requirements.

In a scenario where Spinnaker is making decisions for them, the desired state
should be continuously maintained in the face of unintentional changes. Spin‐
naker will soon have the capability, at the discretion of application owners, of
maintaining desired state and performance characteristics of applications even
after delivering software to its target environments.

Of course, some users will want to continue to have all the knobs available to
them, so this magic is optional. In order to achieve this, declarative and impera‐

60 | Chapter 9: Declarative Continuous Delivery

tive must be able to coexist side by side, and users must be given the tools to
migrate between the methodologies without downtime.

It’s important to understand that through declarative, Spinnaker is not looking to
subvert or become devops for people. When Spinnaker makes decisions on
behalf of users, they’re already aware Spinnaker is configured to perform these
decisions and what those decisions mean. At any point, users must have the
power to suspend Spinnaker’s automation should they disagree with the choices
it makes. This is an important feature in building intelligent autonomous sys‐
tems: the need to break the glass is inevitable, and should always be available and
easy to actuate.

Summary
While we’ve painted a picture of what a declaratively powered Spinnaker could
be, such a system is still under active development and iteration. It won’t solve all
problems, but it can offer powerful solutions to high-scale organizations if you
want it. Just as a pipeline will work for one team and not another, imperative
workflows may be a great fit over a declarative solution for some organizations.

Summary | 61

CHAPTER 10

Extending Spinnaker

The previous sections of this report have covered built-in or planned functional‐
ity for Spinnaker. However, Spinnaker enforces a particular paved path that
doesn’t represent every use case.

There are four main ways to customize Spinnaker for your organization: API
usage, building UI integrations, writing custom stages, and bringing your own
internal logic. This chapter will dive into those scenarios with an example of
each. At the end of this chapter, you should have a good understanding about
how to customize Spinnaker beyond the out-of-the-box deployment experience
provided.

API Usage
The first way to customize Spinnaker is by hitting the API directly. Teams at Net‐
flix use the Spinnaker API for a variety of reasons.

Some teams want to create security groups and load balancers programmatically
as part of spinning up full deployment stacks for services like Cassandra, which
isn’t a supported flow via the UI. Teams use scripts to create this infrastructure.

Another popular API use case is managing workloads that don’t fit Spinnaker’s
deployment paradigm. Teams may have existing orchestrations but use Spin‐
naker to do the actual creation and destroying of infrastructure. Scripts are used
to orchestrate deployment of multiple applications or services that depend on
each other and have a more complex deployment workflow.

A third group of teams use the Spinnaker API to build their own specialized plat‐
form UI. This helps them surface only the information their team needs and
reduces the cognitive load on their engineers.

63

UI Integrations
At Netflix, we customize the UI to show relevant information. One of the most
useful customizations we’ve put in place is providing a shortcut to copy the ssh
command to each running instance. We surface this in the instance details sec‐
tion as a button that copies the unique ssh command (Figure 10-1).

Figure 10-1. The copy ssh command button shows up next to the instance ID. This
view shows up when you click a particular instance to show the details about that
instance (righthand panel).

We also have an integration with PagerDuty, and add a link in each application to
page the application owner (Figure 10-2).

Figure 10-2. The button to page an application owner. This integration appears on
the top-right corner of the screen, next to the config tab for the application.

These are just two examples of how you can customize the UI of Spinnaker to fit
the needs of your organization.

64 | Chapter 10: Extending Spinnaker

Custom Stages
Spinnaker allows you to call out to custom business processes via the Webhook
stage or the Run Job stage. For more complex integrations you can build a cus‐
tom stage.

Custom stages allow you to build your own UI to surface specific data. They
ensure that interactions with the business process are well defined and
repeatable.

Netflix has several custom stages built to integrate with internal tools. Teams
have created a ChAP stage to integrate with our Chaos testing platform. Teams
have also created a stage to do squeeze testing.

Internal Extensions
Spinnaker is built wholly on Spring Boot and is written to be extended with
company-specific logic that isn’t necessarily open sourced. By packaging your
own JARs inside specific Spinnaker services, you’ll be able to tune Spinnaker’s
internal behavior to match the unique needs of your organization.

For example, Netflix uses two cloud providers besides AWS: Titus, our container
cloud (recently open sourced), and Open Connect (our content delivery network,
internal only). Supporting these cloud providers requires additional custom logic
in the frontend and backend services that make up Spinnaker—Deck, Cloud‐
driver, Orca, and Gate. Furthermore, we’ve extended Clouddriver in the past to
support early access to AWS features.

Unsurprisingly, these private cloud providers are no different than the ones that
are open sourced. Any new or existing cloud provider can very well be consid‐
ered an extension.

All of our services have a common platform of extensions to integrate with the
“Netflix Platform,” such as using an internal service called Metatron for API
authentication, AWS user data signing and secrets encryption, as well as building
in specific hookpoints calling out to AWS Lambda functions that are owned by
our Security team.

Enumerating all of the ways we’ve added little bits of extension into Spinnaker
would be a report in and of itself.

Summary
Spinnaker can be extended and used in multiple ways. This gives tremendous
flexibility to create a system that works for your deployment.

Custom Stages | 65

Extensibility of a continuous delivery platform is crucial; an inflexible system
won’t be able to gain critical adoption. While a system like Spinnaker can address
the 90% use case of Netflix, there will always be edge cases that won’t be natively
supported.

As Spinnaker exists today, extensions are a power-user feature: for frontend it
requires TypeScript and React experience, and the backend services require JVM
experience. As crucial as extensibility is, we will be continuing to focus on mak‐
ing pluggability and extensibility more approachable.

66 | Chapter 10: Extending Spinnaker

CHAPTER 11

Adopting Spinnaker

A question we are often asked by individuals and companies after an initial eval‐
uation of Spinnaker is how they can effectively onboard engineering teams, espe‐
cially when doing so involves reevaluating established processes for software
delivery.

Over the past four years, Spinnaker adoption within Netflix has gone from zero
to deploying over 95% of all cloud-based infrastructure, but that success was by
no means a given. A core tenet of the Netflix culture is that teams and individuals
are free to solve problems and innovate as they see fit. You can thus think of Net‐
flix Engineering as a vast collection of small startups. Each team is responsible
for the full operational lifecycle of the services they develop, which includes
selecting the tools they adopt and their release cadence. We couldn’t just dictate
that teams had to abandon their existing deployment tooling and replace it with
Spinnaker. We had to make Spinnaker irresistible.

Sharing a Continuous Delivery Platform
Here are some key features of Spinnaker that helped convince teams to try out
and ultimately adopt Spinnaker:

Make best practices easy to use
Automated canary analysis drove many teams to evaluate and ultimately
adopt Spinnaker. Prior to Spinnaker, teams came up with their own methods
for leveraging the canary engine, and they were responsible for every step of
the process: launching clusters, running the analysis, evaluating metrics,
go/no go, tearing down clusters. Spinnaker democratized automated canary
analysis by making it easy to use. Teams could iterate quicker and with a
higher degree of safety, without spending time dealing with infrastructure
setup and teardown. By leveraging centralized platforms like Spinnaker,

67

complex best practices can be easily adopted and shared across the entire
company.

Secure by default
By using a centralized tool for continuous delivery, we can enforce and auto‐
matically apply good defaults. At Netflix, Spinnaker automatically enforces
default security groups and IAM roles to ensure that all infrastructure
launched with Spinnaker adheres to recommendations of the security team.
Clusters created by Spinnaker are signed so that they can verify themselves
and get credentials from Metatron, Netflix’s internal credential management
system. Teams get added security by deploying to the cloud with Spinnaker.

Standardize the cloud
As mentioned in previous chapters, the consistent Netflix cloud model
removes the guesswork from creating new versions of software and enforces
consistency across multiple cloud providers. By having a consistent cloud,
we make it easy to build additional tools that support the cloud landscape.
All other tools at Netflix take advantage of this consistent naming conven‐
tion. By opting into Spinnaker, Netflix teams opt in to better alerting, report‐
ing, and monitoring.

Reuse existing deployments
The Spinnaker API and tooling ensure that existing deployment pipelines
can still be used while taking advantage of the safer, more secure Spinnaker
deployment primitives. For teams that already had existing Jenkins work‐
flows, we ensured that they could either plug Spinnaker into their jobs or
helped them encapsulate their jobs as stages that are reused within Spin‐
naker. Using Spinnaker for these teams was not an all-or-nothing decision.

Ongoing support
When we first started Spinnaker, we held weekly office hours and hand-held
teams into migrating their existing deployments into Spinnaker. While a
team might deploy only a few times a day, the aggregate knowledge of tens of
teams deploying a few times a day helps build more robust and dependable
systems. By having a centralized team that monitors all AWS and container
deployments, we can quickly react to regional issues and help teams move to
the cloud quicker.

Having a centralized team responsible for infrastructure deployments also
reduces the support burden of other centralized teams. Sister teams that provide
database or security services at Netflix often create guides focused on Spinnaker,
as this is the preferred deployment tool.

68 | Chapter 11: Adopting Spinnaker

1 https://medium.com/netflix-techblog/creating-your-own-ec2-spot-market-part-2-106e53be9ed7
2 https://medium.com/netflix-techblog/the-evolution-of-container-usage-at-netflix-3abfc096781b
3 https://www.youtube.com/watch?v=p8qSWE_nAAE
4 http://www.googblogs.com/guest-post-multi-cloud-continuous-delivery-using-spinnaker-at-waze/

Success Stories
As more teams adopted Spinnaker, they started using it in some ways that we did
not predict. Here are a few of our favorite use cases of Spinnaker:

Spot market
The encoding team at Netflix1 built automation on top of Spinnaker that bor‐
rows from idle reserved EC2 instances and uses them to encode the Netflix
catalog. As Spinnaker has real-time data of available idle instances, it
becomes the perfect tool to build systems that optimize EC2 instance usage.

Container usage and adoption
When the Titus team2 started building their container scheduling engine,
they delegated the orchestration of rolling updates and other CI/CD features
to Spinnaker rather than implementing their own. This made deploying con‐
tainers look and feel the same as deploying AWS images, speeding adoption.

Data pipeline automation
Netflix’s Keystone SPaaS3 is a real-time stream processing as a service plat‐
form that leverages the automation offered by the Spinnaker API. Users have
access to a point-and-click interface to create a stream of data, filter it, and
post the results in sinks like elastic search. All the infrastructure setup and
teardown is managed via Spinnaker invisible from the users of the stream.

Multi-Cloud Deployment
Waze uses Spinnaker4 to leverage their deployments in Google Compute
Platform and Amazon Web Services. They take advantage of the fact that
Spinnaker simplifies and abstracts away a lot of the details of each cloud plat‐
form. By deploying to two cloud providers, they get added resilience and
reliability.

Additional Resources
If you would like to learn more about Spinnaker, check out the following
resources:

• Spinnaker website
— Getting started guides
— Installing Spinnaker with Haylard

Success Stories | 69

https://medium.com/netflix-techblog/creating-your-own-ec2-spot-market-part-2-106e53be9ed7
https://medium.com/netflix-techblog/the-evolution-of-container-usage-at-netflix-3abfc096781b
https://www.youtube.com/watch?v=p8qSWE_nAAE
http://www.googblogs.com/guest-post-multi-cloud-continuous-delivery-using-spinnaker-at-waze/
http://spinnaker.io
https://www.spinnaker.io/guides/
https://www.spinnaker.io/setup/

• Blog
• Slack channel
• Community forums
• Spinnaker on the Netflix Tech Blog
• Spinnaker on the Google Cloud Platform Blog

Summary
In this chapter, we shared some of the benefits of centralizing continuous deliv‐
ery via a platform like Spinnaker. With Spinnaker, teams get access to best practi‐
ces and a secure and consistent cloud that is well supported and always
improving. They also unlock a passionate open source community dedicated to
making deployment pain go away.

Continuous delivery is always evolving. New concepts, ideas, and practices are
always emerging to make systems more robust, resilient, and available. Tools like
Spinnaker help us quickly adopt practices that encourage productivity, safety,
and joy.

70 | Chapter 11: Adopting Spinnaker

https://blog.spinnaker.io/
http://join.spinnaker.io/
https://community.spinnaker.io
https://medium.com/netflix-techblog/search?q=spinnaker
https://www.google.com/search?q=site:cloudplatform.googleblog.com spinnaker

About the Authors
Emily Burns is a Senior Software Engineer in the Delivery Engineering team at
Netflix. She is passionate about building software that makes it easier for people
to do their job.

Asher Feldman is a Senior Software Engineer in the Delivery Engineering team
at Netflix. He is passionate about automation at scale and leads the effort to inte‐
grate Netflix’s Open Connect CDN infrastructure with Spinnaker.

Rob Fletcher is a Senior Software Engineer in the Delivery Engineering team at
Netflix. He has spoken at several conferences and is the author of Spock: Up and
Running (O’Reilly).

Tomas Lin is a Senior Software Engineer in the Delivery Engineering team at
Netflix. A founding member of the Spinnaker team, he built the original Jenkins
integration and maintains the integration with the Titus container platform.

Justin Reynolds is a Senior Software Engineer in the Delivery Engineering team
at Netflix.

Chris Sanden is a Senior Data Scientist in the Cloud Infrastructure Analytics
team at Netflix. He is passionate about building data driven products and has
contributed to efforts around automated canary analysis (ACA).

Lars Wander is a Software Engineer leading Google’s Open Source Spinnaker
team. He led the integration between Spinnaker and Kubernetes, and recently led
the effort to write Halyard, a tool for configuring, deploying, and upgrading
Spinnaker.

Rob Zienert is a Senior Software Engineer in the Delivery Engineering team at
Netflix. He has contributed mostly around operations and reliability across the
services and is the lead for the declarative effort within Spinnaker.

http://shop.oreilly.com/product/0636920038597.do
http://shop.oreilly.com/product/0636920038597.do

	Cover
	Copyright
	Table of Contents
	Preface
	Spinnaker
	Who Should Read This?
	Acknowledgements

	Chapter 1. Why Continuous Delivery?
	The Problem with Long Release Cycles
	Benefits of Continuous Delivery
	Useful Practices
	Summary

	Chapter 2. Cloud Deployment Considerations
	Credentials Management
	Regional Isolation
	Autoscaling
	Immutable Infrastructure and Data Persistence
	Service Discovery
	Using Multiple Clouds
	Abstracting Cloud Operations from Users
	Summary

	Chapter 3. Managing Cloud Infrastructure
	Organizing Cloud Resources
	Ad Hoc Cloud Infrastructure
	Shared Cloud Resources

	The Netflix Cloud Model
	Naming Conventions
	Versioning
	Deploying and Rolling Back
	Alternatives to Red/Black Deployment
	Self-Service

	Cross-Region Deployments
	Active/Passive
	Active/Active

	Multi-Cloud Configurations
	The Application-Centric Control Plane
	Multi-Cloud Applications

	Summary

	Chapter 4. Structuring Deployments as Pipelines
	Benefits of Flexible User-Defined Pipelines
	Spinnaker Deployment Workflows: Pipelines
	Pipeline Stages
	Infrastructure Stages
	External Systems Integrations
	Testing
	Controlling Flow

	Triggers
	Notifications
	Expressions
	Version Control and Auditing
	Example Pipeline
	Summary

	Chapter 5. Working with Cloud VMs: AWS EC2
	Baking AMIs
	Tagging AMIs
	Deploying in EC2
	Availability Zones
	Health Checks
	Autoscaling
	Summary

	Chapter 6. Kubernetes
	What Makes Kubernetes Different
	Considerations
	How Are You Building Your Artifacts?
	Is Your Deployed Configuration and Image Versioned?
	Should Kubernetes Manifests Be Abstracted from Your Users?
	When Is a Deployment “Finished”?
	How Do You Handle Recoverability?

	Summary

	Chapter 7. Making Deployments Safer
	Cluster Deployments
	Pipeline Executions
	Automated Validation Stages
	Auditing and Traceability
	Summary

	Chapter 8. Automated Canary Analysis
	Canary Release
	Canary Analysis
	Using ACA in Spinnaker
	Setting Up the Canary Stage
	Reporting

	Summary

	Chapter 9. Declarative Continuous Delivery
	Imperative Versus Declarative Methodologies
	Existing Declarative Systems
	Demand for Declarative at Netflix
	Intelligent Infrastructure

	Summary

	Chapter 10. Extending Spinnaker
	API Usage
	UI Integrations
	Custom Stages
	Internal Extensions
	Summary

	Chapter 11. Adopting Spinnaker
	Sharing a Continuous Delivery Platform
	Success Stories
	Additional Resources
	Summary

	About the Authors

